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Introduction

In our last exam, we were introduced to data collected for the purposes of
comparing the foam index of espressos brewed three different ways.

When asked how we might test for differences in foam index across the
three groups, with our current toolbox, our only option would be to
perform tests for each pairwise comparison (for a total of three tests).

When everyone's discussing their
answers from the exam and none
of them match what you wrote
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What have | done %
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Introduction

One issue with this approach, which becomes increasingly
apparent when you consider larger numbers of groups, is
performing multiple comparisons.

With only three groups, testing each pairwise comparison
makes for a total of (3) = 3 tests.

If instead we were comparing across six groups, testing each
pairwise comparison would require we perform (5) = 15 tests!

An alternative, more efficient, approach in assessing
differences in a quantitative measure across several categories
of a categorical variable is ANOVA, or Analysis of Variance.
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In order to avoid further revisiting of any second exam traumas, we'll
abandon the espresso dataset as a motivating example.

Instead, we'll use data collected from the National Advanced Driving

Simulator (NADS) for a study investigating the link between drug use
and risky driving behavior.

Figure 1: An Example of Risky Driving Behavior
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NADS Study

In the NADS study, participants were first asked to describe
their drug use and were subsequently categorized into one of
four groups: Alcohol, MDMA, THC, or no drug use.

Subjects who described using multiple drugs were classified
according to the "hardest” drug they used (i.e. MDMA >
THC > Alcohol).

Using a driving simulator, subjects were then asked to follow a
lead vehicle that was programmed to vary its speed
unpredictably.

The average following distance of each driver was recorded,
and drivers were considered more cautious if they followed at
larger distances.
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n
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NADS Study

Shown below are boxplots of the average following distances
across each group:
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Question: Can you infer anything about the relationship —
between drug use and risky driving? Is this plot informative? =%
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Outliers

The previous boxplot makes it difficult to assess any differences in
following distance across the groups.

This is largely due to the distortion created by the extreme outliers in the
no drug use and THC categories. If we remove these outliers, we obtain

the following figure:
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drug use and risky driving? Is this plot informative?
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Outliers

With the outliers removed, the plot becomes much more
informative. We see that most groups generally appear the
same, with MDMA being a possible exception.

Additionally, rather than the extreme skewness initially
observed, we see that the data within each group is roughly
symmetric and normally distributed.

By visually comparing both graphs, it is clear that outliers can
have a substantial effect on how data are interpreted.

Furthermore, outliers can influence the results of approaches
(e.g. t-tests) that rely on distributional assumptions (e.g.
normality assumptions).

I/
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Impact of Outliers

With your groups, load the Tailgating dataset into Minitab
and answer the following questions. Note that the variable
"D" contains each subject’s average following distance.

1) Is there a difference in average following distance between the
MDMA and THC groups? Use a two-sample t-test.

2) Manually delete the outlying observation in the THC group
(the subject whose average following distance is around 350),
and repeat the test.

3) How do the two test results compare?

”
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Impact of Outliers

Performing a two-sample t-test with the outlier included yields
a p-value of 0.09. Assuming a significance level of 5%, we
would fail to reject the null hypothesis.

However, if we remove the outlier, the same test yields a
p-value of 0.03. In this instance, we would reject the null
hypothesis...so which result should be used?

While it may be tempting to use the second set of results
(with the outlier removed), it is important to first consider
whether there is some justification for removal beyond the sole
fact that the data point is an outlier.

I/
n
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Impact of Outliers

Sufficient justification for removal would include:
e The outlier is the result of recording or measurement error
(e.g. pulse rate of 0 or age of 155).

e The subject was not taking the study seriously or was not
complying with study protocol.

Without justification, we are essentially selectively choosing
which data should be kept and which should be discarded.

This data "cherry-picking” will, at best, lead to severely
biased inference, and, at worst, lead to a completely
meaningless set of results.
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n

J. E. Flores ANOVA 11 of 49



Outliers and Transformations
0000000@000000000

Dealing with Outliers

So what do we do if we can't justifiably remove an outlier,
and it is, in fact, a real data point?

In these instances, rather than manipulate the raw data in
some way, we should think of alternate analytic approaches
that might accommodate outliers.

In some cases, outliers can provide the greatest insight
towards answering a question.

To (briefly) illustrate this point, consider the famous 1980
NASA ozone fiasco.
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n
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Nimbus-7 and the Ozone

In the mid 1980's, a large hole in the ozone layer above Antarctica was
discovered, garnering worldwide attention.

Given the size of the hole, it was surprising that NASA, who had been
monitoring the Earth’s atmosphere using the Nimbus-7 satellite since the
early 70’s, had only then discovered the hole.

After a bit of headscratching, NASA discovered that the Nimbus-7 was
programmed to automatically discard certain unexpected observations as
errors (i.e. outliers).

Further inspection of the raw Nimbus-7 data (including the discarded
outliers) showed that the Antarctic ozone hole had been around for nearly
a decade!

Lesson: Don't discard outliers without sufficient reason!

I/
n
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Back to the NADS Study...

If we were to assume that, in our NADS Study, the outliers
are "real” data points and there is no justification for their
removal, our data are severely right-skewed:

ALC MDMA NODRUG THC
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Log Transformations

One way that we alter our analytic approach to address this skewness is
to apply a log transformation to our outcome data.

In doing so, rather than looking at group differences in average following
distance, we are assessing the group differences in the average
natural logarithm of following distance.

Distance Log(Distance)

count

04 1 1 Imll 1 1
3 1

100 200 300
Following Distance (No Drug Group)
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Log Transformations

While log transformations aren't perfect solutions, they can often greatly
attenuate the degree of skewness in your data.

As a result, assuming normality for the sake of a t-test becomes a much
more reasonable thing to do.

However since, in this example, we are now working with the
log(Distance) as opposed to the Distance, the way we interpret our t-test
is different.

If, for example, we wanted to compare distances in the No Drug and THC
groups we would compute the difference in mean log(Distance) and
obtain 0.084.

This difference (on a log scale) is equivalent to a ratio in the
untransformed scale:

log(A) — log(B) = log(A/B)
=  exp(log(A/B)) = A/B

”
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Log Transformations

If we were to exponentiate the difference in mean
log(Distance) (i.e. 0.084), we would obtain:
exp(0.084) = 1.00.

This value, 1.9, is the ratio of average following distance in
the No Drug and THC groups. From this ratio, we can say
that the mean following distance of the No Drug group was
9% greater than the THC group average following distance.

To be a bit technical, this ratio is actually a ratio of the
geometric means rather than the arithmetic means.

Despite this technicality, the bottom line is that analyzing
log-transformed data provides an idea of the relative change
across groups.

I/
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Log Transformations

Aside from sometimes allowing us to make normality
assumptions more comfortably, log transformations allow us to
construct confidence intervals for the relative changes across
groups.

To do so, we first calculate a confidence interval in the usual
way using the log-transformed data and then exponentiate the
end points:

ClI for difference in log(Distance):

s2 2
L + 22 — (EPy, EPy)
np

log(D1) — log(D2) % teri

Cl for relative change in Distance: (exp(EP1),exp(EP2))
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Practice

With your groups create a new variable labeled "LogDistance”
in Minitab by taking the log of each value under "D". Check
that this new variable matches the existing variable "LD".

Construct a 95% confidence interval for the mean relative
increase in following distance of No Drug and THC users.

Perform a two-sample t-test using the log-transformed data
for No Drug and THC groups and compare the results with a
two-sample t-test on the untransformed data.

I/
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Solution

We first obtain a 95% confidence interval for the difference in mean
log(Distance) between the two groups:

2 2
log(Dp) — log(Drac) £ teiey | SN2+ STHC _ (_0.151,0.318)
nnp NTHC

Exponentiating the endpoints of this interval, we obtain the 95% ClI for
the mean relative increase in following distance of No Drug and THC

users:
(exp(—0.151), exp(0.318)) = (0.86, 1.37)

The above result indicates that the No Drug following distance plausibly
ranges from 14% shorter to 37% longer than the THC following distance.

The test statistic on the log scale is 0.71 with a p-value of 0.478, and, on
the original scale, the test statistic is 0.39 with a p-value of 0.70.

While both would lead us to fail to reject the null hypothesis, the test on
the log-scale is more powerful since it better meets the t-test’'s normality
assumptions.

]
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Weren't We Supposed to Talk About ANOVA?

We began this lecture by teasing an analytic approach called
ANOVA, and subsequently discussed the tangential topics of
outliers and log-transformations.

With these important concepts behind us, we'll next speak
broadly about making comparisons across multiple groups,
and then lead into a discussion of statistical modeling and
ANOVA.

IT'S CALLED GOING OFF.ON A TANGENT.

”
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1 TIIE ORIGINAL CONVERSATION
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Comparing Multiple Groups

As | mentioned at the start of the lecture, we technically have the
capability of finding differences across multiple groups.

To do so, we would need to perform a series of pairwise comparisons (i.e.
two sample t-tests), and compile the results of all tests to gain some
overall understanding.

The problem with this approach is that often times several pairwise
comparisons need to be made, making it difficult to interpret results
holistically and, perhaps more importantly, leading to an increased
(overall) type | error.

In order to address the type | error rate issue, we have two options:

1) We can adjust the significance threshold for each individual pairwise
comparison.

2) We can perform a single joint test assessing the association between
group and following distance (i.e. ANOVA).

n
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Adjusting «

Suppose that, for the NADS study, we test all pairwise comparisons at
a = 0.05 for a total of six tests.

If we assume that each test was (probabilistically) independent of one
another and that for each comparison, the null was actually true, the
probability of committing at least one type | error would be:

Pr(At least one type | error) = 1 — Pr(No type | errors)
= 1—(1-0.05)° =26.5%

The above calculation suggests a simple correction to the significance
level of each test: a® = «/h, where h is the total number of tests being
performed. This correction is known as the Bonferroni Correction.

Pr(At least one type | error) = 1 — Pr(No type | errors)
1—(1-0.05/6)° ~5%

I/
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The Bonferroni Correction

The Bonferroni correction, or adjustment, controls the
family-wise, or experiment-wise, type | error rate at a.

This adjustment tends to be conservative in that it usually
controls the family-wise error rate below «, rather than at
exactly a.

Aside from the Bonferroni correction, there are a slew of
other, more powerful, approaches to family error rate control.
However the Bonferroni adjustment is arguably the most
intuitive and easiest to implement.

In some cases Minitab will even provide Bonferroni corrected
confidence intervals, which are created by using a* to adjust
the critical value (zerit or teit) used to construct the interval.

I/
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With your groups, perform the six pairwise t-tests comparing
the log(Distance) between each group. Answer the following
questions:

1) How many differences are significant using a non-adjusted « of
0.057 Do you expect the experiment-wise error rate to be
higher or lower than the significance level for each individual
test?

2) How many differences are significant using a
Bonferroni-adjusted a? Do you expect the experiment-wise
error rate to be higher or lower than the significance level for
each individual test?

3) Does using the bonferroni correction affect the power of each
test? If so, in what way? If not, why not?

I/
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) ALC vs NODRUG, p-value = 0.5102

) ALC vs MDMA, p-value = 0.00417

) ALC vs THC, p-value = 0.8959

) THC vs NODRUG, p-value = 0.4782

) THC vs MDMA, p-value = 0.01383

) MDMA vs NODRUG, p-value = 0.00216

DO W N

Using the unadjusted threshold, there are three significant
results: 2), 5), and 6). However, we expect our overall type |
error rate to be higher than 0.05.

Using the Bonferroni-adjusted threshold (0.05/6 = 0.0083),
we find only two significant results: 2) and 6).

We would then conclude that the following distances are
different between the ALC and MDMA groups, as well as
between the MDMA and NODRUG groups.
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What About Power?

While using a Bonferroni adjustment effectively controls our overall type |
error rate, it comes at the cost of statistical power.

Applying a Bonferroni adjustment decreases the significance level, «, of
each individual test. As a result, the amount of evidence necessary to
reject each null hypothesis increases, making the number of rejections
fewer than if using an unadjusted a.

With fewer rejections, we can then expect a decrease in power (and
increase in type Il error rate).

If we wanted to avoid this tradeoff and still control our type | error rate,
we could turn to option (2) and use a single, joint test (i.e. ANOVA) of
the hypothesis:

Ho : pnp = pTHC = AL = AMDMA

I/
n

J. E. Flores ANOVA 27 of 49



Comparing Multiple Groups
000000e00000000000000000000

As the name implies (i.e. Analysis of Variance), in ANOVA we
analyze the total observed variability in our outcome data in
order to appropriately partition it between two sources:

1) Variability arising due to differences between groups (i.e.
between-group variability)

2) Variability arising due to differences within groups (i.e.
within-group variability)

Intuitively, if there was more between-group variability than
within-group variability, it would be reasonable to conclude
that there are significant group-level differences in our
outcome.

I/
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Partitioning Variability
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Statistical Modeling

To better frame the idea of partitioning variability, it is important that we first
discuss statistical modeling.

A model is a simplified characterization of a certain process or relationship.
Good models are those which, while maintaining some degree of simplicity,
accurately describe or explain the phenomenon of interest.

Statistical models are models in every sense of the word, but their "quality” is
measured by their ability to "explain” the variability in a certain outcome
variable.

It is generally impossible for models to explain all of the variability in an
outcome, but some models are better than others in this endeavor.

As an example, consider the following two models:

1) Using the height of a child’s parents to predict the child’s adult height
2) Using the child’s weight at birth to predict the child’s adult height.

Clearly, we would expect the first model to do a better job in predicting, or
explaining the variability in, the child’s adult height.

n
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Statistical Models

The simplest statistical model, often referred to as the null model, is one
which posits that all outcome variability is "unexplainable” and should
therefore be modeled using a single mean.

In the case of the NADS study, the null model would correspond to using
the mean following distance (across all groups) as the prediction for
everyone in the study.

More complex statistical models are those which use one or more
explanatory variables to explain the variability in an outcome of interest.

For the NADS study, an example of a more complex statistical model
would involve using the mean following distance for a study group
(NODRUG, ALC, THC, or MDMA) as the prediction for individuals in
that group.

I/
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Total Variability

The quality of a model is measured by its ability to "explain”
the variability in a certain outcome variable.

We often summarize the total variability in an outcome by the
Total Sum of Squares (SST):

55T = Z(YI — )

You may recognize that this is simply the sum of the
residuals, r;, = y; — y.

We can then assess the quality (or fit) of a model by the share
of SST it explains. The greater share, or proportion, of SST

that is accounted for by a model, the better that that model
is RS
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Sum of Squares Error

Since models generally are not perfect, it is often of interest to quantify
the amount by which their predictions fall short.

We often use the Sum of Squares Error, or SSE, as a measure of model
error. The larger the SSE, the worse a model is.

The way in which the SSE is computed is dependent on the model that is
fit.

As an example, for the NADS study, the SSE for the null model is

computed:
> i—y)y

In contrast, if we wanted to use the study groups to model our outcome,
the SSE would be computed:
—\2
Z(M‘ - ¥i)

i

I/
n

where y; is the appropriate group-specific mean.
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Model Fit

Using both the SSE and SST, we can quantify the fit of a model (i.e.
proportion of explained variability) through the coefficient of

determination, R:
| SST - SSE

SST
Under the null model, SST = SSE, and so R? is 0.

R2

For the tailgating data, under the model where each group gets its own
mean, R? = 0.055 indicating that the model explains 5.5% of the total
variability.

Increasing the complexity of a model will always lower the SSE and
increase R?. Despite this, care must be taken not to overfit your model
by adding unnecessary complexity.

Rather, we should test whether introducing complexity lowers the SSE by

more than what we'd expect to see by random chance. uz
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ANOVA is simply a special type of statistical model in which a
single categorical variable is used to predict a quantitative
outcome.

In order to test whether the drop in SSE resulting from
including a single categorical variable is greater than what
we'd expect to see by random chance, we use the test statistic:

(SST — SSE)/(d1 — db)
Std. Error

where di and dj refer to the number of parameters in the
model being considered (i.e. the model using a single
categorical variable as a predictor) and the null model.

F=

For the NADS study, dy = 1 (the single overall mean) and
di = 4 (each group's mean).

I/
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For tests we've learned in the past that involve quantitative
variables, we've seen that the standard errors involve some
measure of variability divided by the sample size (e.g. %)

In the ANOVA setting:

SSE

Std. E =
rror n—d1

Using this standard error, the F statistic can be expressed:

(SST — SSE)/(dy — do)

F= SSE/(n— di)

”
n
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F-Test and Variability

SST is the total sum of squares which quantifies the total
variability in the outcome, y. SST = 3;(yi — y)°.

SSE is the outcome variability that remains unexplained after
implementing your model. Under the null model, SSE = SST.
Under the ANOVA model, SSE = 3";(yi — ¥i)?.

By subtraction, we can determine how much variability is
being explained by the inclusion of our categorical variable:

S5G = SST — SSE

where S5G, the Sum of Squares Groups, quantifies the
amount of variability explained using the categorical variable
groups in our model.

I/
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F-Test and Variability

Using SSG, we can express the F-statistic as:

| SSG/(dy — db)

F = SSEjn— )

Sums of squares divided by their degrees of freedom are often
called mean squares, and allows us to express the F-statistic

as:
MSG

F=-"""
MSE
where MSG is the mean square of groups and MSE is the
mean square of errors.

”
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Math Overload

At this point in the lecture, and with all the math thrown at
you all, I'm seeing a lot of this:

”
n
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Math Overload

This is completely understandable, and the good news is that | will not
expect you to memorize these formulas or compute any of these things by
hand.

However you will be expected to understand and interpret an ANOVA
table, which is a common piece of software output for ANOVA.

Then general form of these tables is shown below:

Source DF SS MS F-Value P-Value
Group di—dy S5G MSG MSG/MSE  Use Fg,—dy,n—d
Error n—d SSE  MSE

Total n—dy SST

do = 1, the null model has one parameter, a single overall mean

di = k, the alternative model has k parameters, a different mean for each
group.

I/
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With your groups, complete the following ANOVA table
(assuming this is a typical ANOVA test with dp = 1):

Source DF SS MS F-Value P-Value
Group 4 200 7 ? ?
Error ?7 440 7

Total 59 ?

”
n
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In this example, di = k=5 and n = 60 so:

Source DF SS MS F-Value P-Value
Group 4 200 50 6.25 0.0003
Error 55 440 8
Total 59 640

The p-value is found using the right-tail area beyond 6.25 of
an F distribution with (4,55) degrees of freedom.

J. E. Flores ANOVA

”
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Minitab Practice

With your groups, use Minitab to analyze the Tailgating data
with ANOVA (Stat — > ANOVA — > One-way). Use
log(Distance) as your outcome variable. Be sure to report:

1)
2) Your test-statistic
3)

Your null and alternative hypotheses

Your p-value and a one sentence conclusion

”
n
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Solution

1) Ho: pnp = pTHC = paLc = mpma; Ha o pi # pj for at least
one pair.

2) F=223

3) Using a F3 115 distribution, we obtain a p-value of 0.088.
There is borderline evidence that drug use is predictive of
following distance. It appears that the MDMA group is most
different in that the group generally has shorter following
distances than the rest.

”
n
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Inference After ANOVA

The results of an ANOVA test only tells us whether a
difference across groups exists, and not which specific groups
are different.

Because of this, ANOVA is often followed by a few pairwise
comparisons in order to investigate which groups differ.

In Minitab we can do this using Tukey’s honest significant
difference (HSD) test (sometimes called Tukey's range
test).

Similar to the Bonferroni adjustment, Tukey's HSD controls
the family type | error rate for all possible pairwise
comparisons (so we don't need to worry about an inflated
overall type | error rate).

I/
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With your groups, use Minitab to conduct a follow up analysis
of the Tailgating data using ANOVA and Tukey's HSD (click
"comparisons” in the ANOVA menu). Answer the following:
1) Which groups are most different?
2) Which groups are least different?

3) Construct and interpret the confidence interval for the
difference between the "NODRUG"” and "MDMA" groups
(remember that the variable "LD" is on the log scale).

”
n
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Solution

1) The NODRUG and MDMA groups are the most different, but
the difference just misses statistical significance (p = 0.055).

2) The THC and ALC groups are the least different

3) On the log scale the interval is (-0.005, 0.705), and after
exponentiating becomes (0.995, 2.024).

We then conclude that the mean following distance of the
NODRUG group is between 0.5% shorter and 102.4% greater
than the mean following distance of the MDMA group.

I/
n

J. E. Flores ANOVA 47 of 49



Comparing Multiple Groups
00000000000000000000000000e

More on ANOVA and Modeling

In ANOVA, we use a single categorical variable to predict a quantitative
outcome variable.

The ANOVA test will be statistically significant only if the categorical
variable improves prediction beyond what could be attributed to random
chance.

The ANOVA model is just one type of model in the vast array of
statistical models. If we were to cover all statistical models, you'd be
halfway towards getting a PhD in statistics!

We'll instead restrict the last of our lectures to regression models, of
which ANOVA is a special case.

Aside from ANOVA, regression models include the simple regression
models seen earlier in the course (i.e. single predictor) and multiple
regression models with several predictors.

I/
n
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Right now, you should...

e Understand how ANOVA testing is related to statistical
modeling

e Understand the partitioning of variability in ANOVA
e Construct and use an ANOVA table to draw conclusions

e Conduct appropriate follow-up analyses after ANOVA

These notes cover sections 8.1-8.2 of the textbook. Please
read through these sections and their examples along with any
links provided in this lecture.

”
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