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Introduction
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Introduction

At the end of our last lecture, | mentioned that the ANOVA
model is simply a special case of regression model.

Case [T

In this lecture, we will explore the simple regression model
(SLR), which (as we know) allows for testing associations
between two quantitative variables.
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Simple Linear Regression

Given that ANOVA is a special case of regression model,
much of the same concepts discussed in that lecture carry
over to our discussion of simple linear regression.

Like the ANOVA model, the SLR model involves using a
single explanatory variable in order to predict a quantitative
outcome variable.

In the SLR model, however, this single explanatory variable is
quantitative rather than categorical.

With this change in explanatory variable type (i.e. categorical
in ANOVA to quantitative for regression), how do the
concepts introduced in our ANOVA discussion change, if at
all?
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n
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The Null Model and Residuals

In our ANOVA discussion, we learned about the null model, which makes
the same prediction for every observation in a dataset.

For the ANOVA model, this prediction is the overall mean regardless of
the observation’s group membership.

Similarly, in the SLR model, the prediction is the overall mean regardless
of the observation’s explanatory variable.

Thinking way back to our LSD and math scores example, this would
be the equivalent to saying that regardless of how high your LSD
concentration is, you'll do just as well on a math test as anyone
else.

In either the ANOVA or SLR case, the key to evaluating each model (null
or otherwise) is in the residuals:

ri:yi*f/i

I/
n
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Sum of Squares Error

For a given model, the residuals tell us how far off each of our predictions is
from the actual observation. In other words, each residual quantifies the amount
of error made with each prediction.

For the SLR null model, each prediction, y;, is the same and equal to the overall
mean, y. This is also known as an intercept only model.

This model may be expressed as y; = a, where a = y. From this expression we
see that the model has only one parameter, the intercept a, which means that
do = 1.

The "alternative” SLR model is y; = a + bx;. This model adjusts the prediction
for each observation according to the value of X. This alternative model has
two parameters, the slope and intercept (i.e. di = 2).

Computing and summing the residuals for each of these model formulations, we
obtain the SSEs:

Model | Expression SSE
Null Vi=a >ovi—a)

I/
n

Alternative | §; = a+ bx; Zi(y,- — (a+ bx;))?
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SLR ANOVA table

In the same way that we defined SSG in ANOVA, we may define the sum
of squares of the alternative model, SSM:

SSM = SST — SSE

With SSM and SST, we can also compute the coefficient of
determination for the SLR model:

R®> = SSM/SST

Additionally, we can construct the same ANOVA table we've seen before
and use an F-test to evaluate the linear association between X and Y

Source DF SS MS F-Value P-Value
"Model” di—do SSM  MSM  MSM/MSE Use Fg—dy,n—da
Error n—d SSE  MSE
Total n—dy SST

I/
n
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For every university course, students are asked to complete
evaluations which ask a variety of questions related to the
course content and how well the instructor did in teaching it.

At the University of Texas at Austin, a study was interested in
determining whether there was a relationship between end of
course evaluations and the "beauty rating” of a professor.

Six students (three male and three female) were asked to give
each UT-Austin professor a beauty rating on a 1-10 scale
based on a provided photograph of each.

Using these data, a model was constructed relating the
average student evaluation score (which was on a 5 point
scale) to the average beauty score.

I/
n
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Example

UT-Austin Professors

-

Average Student Evaluation

Average Beauty Rating

I/
n
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With your groups, load the UT Profs dataset (available on the
course website) into Minitab and answer the following
questions:

1) What value would the null model predict for each professor's
average evaluation score (i.e. "score")?

2) Fit a simple linear regression model that uses "avg_beauty” to
predict "score”. Using the resulting ANOVA table, does
knowing a professor’s average beauty rating significantly
improve how well you can predict their average evaluation
score?

3) Using the previous model, predict the evaluation score for a
professor with an average beauty rating of 4.418. Have you
seen the resulting prediction before?

I/
n
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Solution

1) The null model using the sample mean for every prediction.
Therefore the null model prediction would be 4.17, which is
the sample mean of the average evaluation scores for
professors.

2) The F-statistic is 16.7. Using an F distribution with degrees of
freedom of 1 and 461, we obtain a p-value of 0.00005 which
indicates that beauty ratings are predictive of evaluation
scores. Since the slope coefficient is positive, we conclude
that higher beauty ratings are associated with higher
evaluation scores.

3) The predicted value for a beauty rating of 4.418 is 4.17, which

is the same as the null model prediction for all professors. —
22
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Inference for Slope

As we did with ANOVA, we should perform follow-up analyses
after a statistically significant F test.

In the case of the ANOVA model, these follow-up analyses
involved performing pairwise comparisons across group means
in order to find where difference(s) arose specifically.

In the SLR model, follow-up analyses of interest involve the
regression slope:

Confidence interval for 3 b + t.i+SE

b—0
SE
For each of these inferential procedures, we use a —
t-distribution with n — 2 degrees of freedom. et

Testof Hy : 8 =0 trest =
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More Rigor!

Up until this point, I've been expressing the SLR model as:
_)A/,' =a+ bX,'

While this expression communicates the practical intuition behind
regression, it does not properly characterize the true regression model:

Yi=a+ BXi+¢€

What is the difference between these two models?

The first, "intuitive” model describes the fitted regression model. As
such, a and b are estimates of the true population parameters (o and S3)
that are used in the expression for the true regression model.

Additionally, the first model only provides the resulting prediction, y;, and
not how it deviates from the observed data point. In contrast, the more
rigorous formulation captures the deviation, or error, through e;. uz
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More on €

In the formal regression model, we assume that the ¢; (i.e. errors) are
independent and are all identically normally distributed.

The ¢; represent the population errors and are estimated by our model
residuals, r;.

Therefore, we can use our model residuals to determine whether the

underlying assumptions of our model (i.e. independent and identically
normal errors) are met.
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Residual vs. Fitted Value Plots

A common way to assess model assumptions is to plot the model
residuals,r;, against the fitted (i.e. predicted) values, §; of a model.

If errors are identically distributed (one of the key SLR assumptions), you

should see a plot like the one below in which the residuals occur in either
direction, in similar magnitude, regardless of the predicted value.
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Residual vs. Fitted Value Plots

In contrast to the previous plot in which the errors were randomly
scattered about 0, patterns in the residual plot are indicative of
systematic error.

In other words, a pattern in the residual indicates that your model is poor
and does not fit well.

In the plot below, we see that our regression model (§ = a + bx) will
over-predict at large or small values of x and under-predict at
intermediate values.
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Residual vs. Fitted Value Plots

To remedy the lack of fit seen previously, we might consider adding a

quadratic component to our model (as suggested by the U-shape in the
fitted v. residual plot).

Doing so results in the multiple regression model:
Yi=a+ X+ X +e

This model is a multiple regression model because we are using two
quantitative predictors, X and X2, as opposed to one. The number of
parameters in this model is 3.

Residuals vs Fitted

Residuals

Fitted values
Imiy2 ~ polypx, 2))
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With your groups,

1) Fit a simple linear regression model using "avg_beauty"” to
predict "score” with the UT Profs dataset.

2) Assess the fit of this model using a residual vs. fitted value
plot. Are the residuals identically distributed?

3) Fit a quadratic model, compare this model’s coefficient of
determination with the simple linear model.

4) Fit a cubic model, compare this model’s coefficient of
determination with the other two models, and decide which is
best.

]
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Looking at the residual vs. fitted value plot, the residuals seem to be
randomly dispersed, which is good.

The simple linear regression model has an R? of 3.5%, the quadratic has
an R? of 4.39%, and the cubic has an R? of 6.1%. It appears the cubic
model may be best, but it could be overfit.
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Comparing Nested Models

In the previous example, we were limited to comparing models based on
their R®.

Given that R? always increases with added complexity, this is not a
reliable way to decide which model is best from among a group of
models.

Instead, we can generalize concepts in ANOVA in order to make
comparisons between any two nested models.

Consider the following models from the previous example:

M :Y=a+ 61X

Mo:Y =a+ X+ X

Ms: Y =a+ BiX + BaX? + X3
M is a special case of M, (i.e. take 8> = 0), and M- is a special case of
Ms (i.e. take B3 = 0). Therefore, M is nested in M, which is nested in

Ms.
. . oz
Question: Is the null model nested in M;?
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Comparing Nested Models

The null model (My : Y = a) is indeed nested in M;!

This considered, we compare the fits of any two nested models the same
way we would compare the fits of the null (My) and alternative (M)
models in ANOVA (i.e. using an F test).

The only difference is that dp and di, the number of parameters in our
"null” and "alternative” models respectively, changes depending on how
we define the "null” model. Comparing M; and M,, for example, we
would say dy = 2 since M; has two parameters and di = 3 since M, has
three parameters.

Source DF SS MS F-Value P-Value
"Model” di—dy SSM  MSM  MSM/MSE Use Fg,—dy,n—da,
Error n—d SSE  MSE
Total n—do SST

]
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Practice

With your groups,

1) Fit a simple linear regression model using "avg_beauty"” to
predict "score” with the UT Profs dataset and record the SSE.

2) Fit a quadratic model and construct the ANOVA table
necessary to conduct an F-test to determine if the added
complexity of a quadratic term significantly improves the
model.

Hint: The SSE of the "null” model should be used as the SST
in the ANOVA table in 2). Similarly the SSE degrees of
freedom for the "null” model should be used as the SST
degrees of freedom in the ANOVA table in 2).

]

J. E. Flores SLR 21 of 30


https://javenrflo.netlify.com/courses/209/data/UTProfs.csv

Solution

Simple Linear Regression
000000000000000000e00000

The resulting ANOVA table, which compares the simple regression model
to the one which includes a quadratic term, is shown below:

Source DF SS MS F-Value P-Value
Model 1 1.2 1.2 4.21 0.041
Error 460 130.7 0.285

Total 461 131.9

The reason we use the SSE from our non-quadratic fit in the table here is
because our interest is in determining whether adding a quadratic term

helps explain any of the remaining unexplained variability (i.e. SSE) in our
outcome after modeling with a single linear predictor. In this case, adding
a quadratic term does indeed improve the model fit (since 0.041 < 0.05).

]
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Confidence and Prediction Intervals

Fitted regression models are typically accompanied by a
confidence interval, prediction interval, or both. Shown below
is a regression plot with the confidence band (i.e. interval)
plotted with hyphenated blue lines.

Regression Line w/ 95% Confidence Band
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Confidence and Prediction Intervals

Shown below is a regression plot with the prediction band (i.e.
interval) plotted with hyphenated red lines.

Regression Line w/ 95% Prediction Band
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Question: What makes prediction and confidence intervals
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-
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Confidence and Prediction Intervals

Consider a specific value of the explanatory variable, i.e. X = x™ where
x* denotes the specific value of the explanatory variable X.

The confidence interval describes the chances of capturing the
mean response for all members of the population with X = x™.

The prediction interval describes the chances of capturing the
individual response for a given individual with X = x*.

For example, the 95% confidence interval indicates that we are 95%
confident that the mean evaluation score for a professor with a beauty
rating of 7.8 is between 4.1 and 4.4.

On the other hand, the 95% prediction interval indicates we are 95%
confident that an individual professor with a beauty rating of 7.8 has an
evaluation score between 3.2 and 5.4.

]
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Practice

With your groups,

1) Fit a simple linear regression model using "avg_beauty"” to
predict "score” with the UT Profs dataset.

2) Use Minitab to plot the regression model with a 99%
prediction interval.

3) What proportion of the observed data do you expect to be
within the prediction band? What proportion is actually within
the prediction band?

s
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Solution

Since we are constructing a 99% prediction interval, we would expect
99% of our observed data to be contained within the prediction band.

The figure below shows that about 5/463 datapoints were excluded by
the prediction bands, suggesting that 98.9% of the observed data were
actually in the prediction band.
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Summary

Simple linear regression is a statistical model that uses a
quantitative explanatory variable to predict a quantitative
outcome.

As in ANOVA, we can assess the propriety of this model (i.e.
how well it fits) using an F-test.

Following an F-test, it is also important to conduct inference
on the model parameters themselves, namely the slope
parameter 3.

We can also use confidence and prediction intervals to conduct
statistical inference on the predictions made by a model.

]
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Summary

We can also generalize ANOVA concepts to compare nested
models.

This technique is particularly important in the context of
multiple regression, in which regression models have several
predictors.

In the last lecture of this semester, we will further explore
multiple regression and increase our understanding of
comparing several models.

]
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Right now, you should...

e Understand the similarities and differences between regression
and ANOVA

e Understand how to evaluate a regression model using an F-test

e Make inferences about the regression slope parameter using a
t-test or confidence interval

e Know the difference between confidence and prediction
intervals

These notes cover chapter 9 the textbook. Please read
through the section and its examples along with any links
provided in this lecture.

L

J. E. Flores SLR 30 of 30



	Introduction
	Simple Linear Regression
	Wrap-Up

