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Introduction

We began this semester talking about puzzles and puppies...
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...and we'll end it talking about multiple regression.

MULTIPLE REGRESSION
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But on the bright side, this is the last lecture of the semester!
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Last Time...

Anyway, in our last set of notes you might remember that we
discussed the multiple linear regression model:

Y =a+ X+ PoX?+¢

What separates multiple regression models from simple linear
regression models is that multiple regression models contain
more than one covariate, or explanatory variable.

As we'll learn later in this lecture, multiple regression models
also have the added flexibility of using either quantitative
variables, categorical variables, or both as covariates in a
single model.
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Multiple Linear Regression

The multiple linear regression model with p covariates can be written as:
Y =a+ X1+ 5o Xo+ 83X+ ... + BpXp + €

A more convenient representation of this model involves the use of
matrices and vectors:

y=XB+e¢
where y and € are nx1 vectors, 8 is a (p + 1)x1 vector, and X is a
nx(p + 1) matrix.

The matrix X is also known as the design matrix, with each of the p +1
columns corresponding to a different explanatory variable (including the
intercept) and each row corresponding to a different observation (hence
the n rows).

B8 = («,B1,B2,...,08p) is the vector containing all of the model
parameters (i.e. regression coefficients).

This formulation is done primarily for mathematical convenience, and you
won't be required to know anything involving matrices beyond what is g
shown here.
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Ozone Concentration

Moving on to more practical considerations of multiple regression, we'll
look at an example involving ozone concentration and its effects on
human health.

Ozone is a pollutant that has been linked to respiratory ailments and
heart attacks.

While there is consensus surrounding the negative effects of ozone on
health, there seems to be a lack of consensus on the point at which
exposure becomes hazardous.

The EPA has a national air quality standard of 75 parts per billion (ppb),
but the EU has a lower standard of 60 ppb. Other research suggests that
adverse health effects occur at ozone concentrations as low as 40 ppb.

Regardless of what standard is used to define hazardous exposure, our
interest is in predicting ozone concentrations - which fluctuate daily - in -
order to protect vulnerable populations. u
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Ozone Concentration

Towards this end, we'll use data collected in New York City recording the
daily ozone concentrations along with some other potential explanatory
variables:

Solar: The amount of solar radiation (in Langleys)
Wind: The average wind speed that day (in mph)
Temp: The high temperature for that day (in Fahrenheit)

To highlight the effects of using a single, multiple regression model as
opposed to multiple, single regression models, we will use both approaches
to model these data. In other words, we will model these data using:

three separate simple linear regression models each containing one
variable, and

a multiple regression model containing all three variables.
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Ozone Concentration

The table below compares the variable effects (coefficients) of a multiple
linear model that predicts "Ozone” to the variable effects obtained from
the three separate simple linear regression models:

Variable | Multiple Regression Univariate Regression

Solar 0.060 0.127
Wind -3.334 -5.729
Temp 1.652 2.439

In the univariate wind speed model, a 1 unit increase in wind speed
corresponds with a decrease in ozone concentration of 5.729.

In contrast, in the multiple regression model, a 1 unit increase in wind
speed while solar radiation and temperature stay constant corresponds
with a decrease in ozone concentration of 3.334 ppb.

Takeaway: The interpretation of univariate model regression results are -
very different from multiple regression model results.....but why? -
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Ozone Concentration

The differences we see between these two modeling
approaches may be attributed to the fact that the univariate
approach does not adjust for confounding associations.

Wind speed and temperature are correlated, with windy days
often being cooler and calm days warmer.

This trend is seen in the data, with increases in wind speed
often being paired with decreases in temperature.

Since wind speed and temperature both are associated with
the ozone concentration, they confound one another.

]
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Adjusting for Confounders

In contrast to univariate (i.e. simple linear) regression,
multiple regression does adjust for the confounding effects of
each variable.

Remember that we interpret the regression coefficient for
"Wind" in the multiple regression model as the expected
change in ozone for a 1 mph increase in wind speed
while solar radiation and temperature stay constant.

In other words, the effect shown is the effect after
"stratifying” by continuous variable(s).

]
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Scatterplot Matrix

To better understand how each variable may be associated
with one another and which should be included as
confounders in your model, it is often useful to view a
scatterplot matrix ("Graph” — > "Matrix Plot” in Minitab):

Ozone . ket g
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With your groups, load the UT Profs dataset into Minitab and
answer the following:

1) Create a scatterplot matrix to visualize the relationships
between "score”, "bty_avg”, and "age".

2) lIs age a confounding variables in the relationship between
"score” and "bty_avg"? Use correlation coefficients to better
interpret the scatterplot matrix.

3) Compare and interpret the effects of "bty_avg” on the simple
linear regression model and the multiple regression model that
includes "age” as an explanatory variable.

]
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Solution

Matrix Plot of score, age, bty_avg

T0

]
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Solution

1) From the matrix plot we see a negative correlation between age and
beauty rating and a negative correlation between age and score. Since
age is correlated with both beauty rating (the explanatory variable) and
score (the outcome variable), it is a confounding variable.

2) In the simple linear regression model, the effect of "bty_avg” is 0.067.
This means that a 1 point increase in beauty rating corresponds with a
0.067 increase in evaluation score.

3) This changes slightly in the multiple regression model adjusting for age.
In the multiple regression model, the effect of "bty_avg” is 0.061. This
means that a 1 point increase in beauty rating, while holding age
constant, corresponds with a 0.061 increase in evaluation score.

Question: Why didn’t the estimate for "bty_avg” change as much

between the two models?
o2
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ANOVA and Multiple Regression

In our last lecture, we generalized ANOVA methods in order to compare
nested models.

Doing so involved the creation of an ANOVA table using different sums of
squares from each model of interest.

In the multiple regression setting, nested models are very common.
Several models can be defined from within a full model.

In the ozone concentration model we've been using,
Ozone = « + B1Solar + BoWind + B3 Temp + ¢,

there are 7 nested models:
e the null model (intercept only)
e 3 different models each containing a single variable
e 3 different models each including two variables
L
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ANOVA and Multiple Regression

Applying ANOVA principles to multiple regression, we can
determine whether a given variable should be included in a
model by comparing the full model to the nested model that
contains everything but the variable of interest.

For example, we could evaluate the importance of "Wind" by
comparing the following models:

Ozone = a + B1Solar + B3 Temp + €

Ozone = « + p1Solar + BoWind + S3Temp + €

Fortunately, by fitting the full model, we can do an ANOVA

test on each variable. It is not necessary to fit each model of
interest and construct separate ANOVA tables for each model
comparison. s
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ANOVA and Multiple Regression

The ANOVA table for the full ozone concentration model is
shown below:

Regression Analysis: Ozone versus Wind, Temp, Solar

Analysis of Variance

Source DF AdjMS  F-Veluz  P-Value
Regression 0 245007 5483 0.000
wind 1 116416 2595 0.000
Temp 1 19050 190499 43 0.000
Solar 1 2086 29362 6.65 o.om
Error 107 48003 4486

Total 110 121202

SSE and SST are interpreted the same way as before: SSE is
the total outcome variability unexplained by the full model,
and SST is the total variability in the outcome of interest.

"Source = Regression” is what we've been referring to as
SSM, and is the total outcome variability explained by the full ws
model.
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ANOVA and Multiple Regression

Regression Analysis: Ozone versus Wind, Temp, Solar

Analysis of Variance

Source DF  AdjS5 AdjMS F-Value P-Value
Regression 2 73790 245007 5483 0.000
Wind 1 11642 118416 2595 0.000
Temp 1 19050 190499 4245 0.000
Solar 1 2986 29362 6.65 o011
Error 107 48003 4480

Total 110 121802

You'll also notice that this table further breaks down SSM by each effect.

Of the total SSM = 73799, "Wind" accounts for 11642, "Temp"
accounts for 19050, "Solar” 2986, and (not shown) the intercept
accounts for 40121. (11642+19050+-2986+40121=73799)

For each effect, F-test results are also provided. In this example, these

F-tests indicate that each of the three explanatory variables should be -
included in the model. i
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Practice

With your groups,

1) Using the UT Profs dataset, fit a multiple regression model
that uses "bty_avg"”, "age"”, "ethnicity”, and "pic_outfit" to
predict "score”.

2) Use the resulting ANOVA table to determine which variables
should be included in the model.

3) How would you interpret the regression coefficient of
"pic_outfit"?

J. E. Flores Mult. Reg.
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Solution

Analysis of Variance

Source DF  AdjS5 AdjMS F-Value P-Value
Regression 4 6.378 1.5945 5.61 0.000
bty_avg 1 3.305 3.3055 11.62 0.001
age 1 0.600 0.6001 2.1 0.147
ethnicity 1 1.075  1.0752 3.78 0.052
pic_outfit 1 0.132 04321 0.46 0.496

Error 458 130276 0.2844
Lack-of-Fit 89  73.407 0.8248 5.35 0.000
Pure Error 369  56.869 0.1541

Total 462  136.654

Looking at the p-values of each coefficient, we see that only
"bty_avg" meets statistical significance at the 0.05 level. This
indicates that this is an important variable to include in the
model. There is marginal evidence suggesting that "ethnicity”
should be included as well.

J. E. Flores Mult. Reg. 21 of 39

Q

n



Multiple Linear Regression
00000000000000000e0

Solution

Coefficients

Term Coef SECoef T-Value P-Value VIF
Constant 4.025 0.204 19.74 0.000
bty_avg 0.0590 0.0173 3.41 0.001 1.4
age -0.00398 0.00274 -1.45 0,47 1.7
ethnicity

not minority 01404 00722 1.94 0052 1.01
pic_outfit

not formal -0.0469 0.0688 -0.68 0496 1.07

The regression coefficient for "pic_outfit” indicates that the
average evaluation score drops by 0.0469 points for professors

not wearing a formal outfit in their picture, assuming all other us
factors are held constant.
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Categorical Covariates

Beyond giving us a bit of practice with multiple regression,
the previous example demonstrated that multiple regression
can accommodate categorical variables (i.e. "ethnicity” and
"pic_outfit”).

This is accomplished through reference coding, where one
category of the categorical variable is set as the "reference”
category and its effect is built in to the model’s intercept.

The model coefficients for the other categories indicate how
the predicted outcome is shifted up or down relative to the
reference group.

]
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Model Selection

By choosing which variables should and should not be
included in a model, we are performing model selection.

In our example, we considered only whether a particular effect
met some threshold for statistical significance.

While this certainly an important consideration in the model
selection process, there are a few additional principles worth
considering when selecting a model.

]
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The Bias/Variance Tradeoff

When selecting a model it is important to strike a balance between the
bias and variability of your model.

With simpler models containing only a few covariates your model may not
be as precise in predicting the data at hand (higher bias), but is not
expected to yield drastically different predictions after adding or removing
data (low variability).

In contrast, fitting a complex model with several covariates may perfectly
predict the data at hand (low or no bias), but will offer substantially
different predictions after adding or removing data (high variability)

Ideally, a model should predict the data at hand well (low bias) and have
relatively consistent predictions despite changes in the data (low
variability).

To demonstrate this principle, consider the following...

]
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The Bias/Variance Tradeoff

Biased but Low Variance

—— Original Data
g Mew Data (20 different ssts) o o
8
= &

10

The simple linear regression model, which contains only a single
covariate, yields biased predictions (the red line does not pass through
every datapoint) but changes only slightly when fit to new samples (grey
lines are the fits for each new sample).
s
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The Bias/Variance Tradeoff

Low Bias but High Variance (6th degree polynomials)

—— Original Data
= Mew Data (20 different sets) s
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The multiple regression model, Y = a+ 51X + B2X2 + -4 BgXG better
captures the curvature in the data, and hence has lower bias than the
simple linear regression model.

However, with new data the predictions of this model change more
drastically. s
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Parsimony

e
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Paraphrasing a quote by Einstein,

"Everything should be made as simple as possible, but not simpler.”

Otherwise known as Occam'’s Razor, the principle of parsimony states
that if two models are equally good at predicting an outcome, the simpler

model should be preferred.

s
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Parsimony and Bias/Variance Tradeoff

=
——

The parsimony and bias/variance tradeoff principles are inherently linked:

Fewer covariates (greater parsimony) translates to larger bias and
lower variability (think the simple regression model)

More covariates (lower parsimony) translates to lower bias and
higher variability (think the multiple regression polynomial model)

Like Goldilocks in choosing porridge, we want to choose the model that is
just right (in that it adheres to these two principles). So how do we do uz
this?
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Model Selection

In past lectures we've discussed R? and how it quantifies the proportion
of variability in our outcome explained by our model.

Question: Knowing that R? always increases with the addition of
covariates, should it be used for model selection? Why or why not?

No! Using R? means that the largest model will always be preferred.
Consequently, both of the previous model selection principles - parsimony
and bias/variance tradeoff - will always be ignored.

Due to this limitation of R?, a separate metric, the adjusted R?, should
be used.

The adjusted R? adjusts for the number of variables included in the
model, penalizing larger models containing unnecessary covariates.

]
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Best Subsets

Using the adjusted R?, we can compare a large number of
models and objectively choose the best from among them.

If the number of variables in your dataset is small enough, it is
often recommended that an exhaustive, best subsets,
approach is taken in which all possible combinations of
variables are used to generate a set of models to compare
across.

In Minitab, this can be done using "Stat” — > "Regression”
— > "Regression” — > "Best Subsets”

Unfortunately, Minitab only allows you to use quantitative

predictors when doing best subsets.
L
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Example

Which model is best according to adjusted R??

4 Best Subsets Regression: Ozone versus Solar, Wind, Temp

Response is Ozone

5

o W T
I B
R-2q  R-Sg  Mallows a n m
Vars B-Sg  lad)  dpred Cp S5 r d g
1 488 483 473 320 23920 k4

1 375 3684 34.3 G625 26424 X
2 581 574 553 87 21728 L
2 510 5041 43.9 279 23500 X "
3 606 595 373 40 21081 X X X
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Other Model Selection Algorithms

As we've seen with some of the datasets we've worked with
throughout the semester, it is rare that we have a dataset
containing only a few variables.

In these instances, when a best subsets approach is not
feasible, we can employ other model selection algorithms to
help us determine a "best” model.

One algorithm, forward selection, begins by fitting the
intercept only model (i.e. null model). Variables are then
sequentially added into the model in order of "most
significant” (based on the variable's F-test).

The algorithm stops adding variables once there are no
statistically significant variables left to add. as
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Other Model Selection Algorithms

As an alternative to forward selection, there is also a
backward selection algorithm.

As the name implies, backward selection begins with the full
model (containing all variables) and sequentially removes
variables in order of their highest p-values until the only
remaining variables are all statistically significant.

And finally, if you don't want to choose between forward or
backward selection algorithms, you can perform stepwise
selection, which adds or drops variables at every step. In this
way, stepwise selection combines both backward and forward
selection algorithms into a single procedure.

]
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With your groups,
1) Using the UT Profs dataset, find a model for "score”.

noon "

2) Start with the predictors "bty_avg”, "age", "ethnicity”,

noon

"gender”, "rank”, and "outfit” and use o = 0.1.

3) What is your final model? Which variable is most important?

Note: The previously described selection algorithms can be
implemented in Minitab using the "Stepwise” button under
"Fit Regression Model".

s
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Algorithm Drawbacks

While each of these algorithmic approaches are convenient to use, they
have a number of downsides.

Of these downsides, arguably the most important is the fact that each of
these are greedy algorithms.

This means that these algorithms focus on choosing the "best” model
locally (i.e. at each step), which doesn’t guarantee that each algorithm
will find the best global model (i.e. the overall "best” model, not the
"best” at just a single step) upon completion.

An immediate consequence of this fact is that the algorithms rarely agree
in the models they select.

Second to "greedy algorithm” drawback, these algorithms are prone to
selecting false positives (i.e. making type | errors) since they rely on
multiple hypothesis tests and don't adjust for multiple comparisons. uz
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Better Approaches

These algorithms are not the only options we have for model
selection.

Model selection is a broad and active area of research in
statistics.

Some better approaches to model selection include
cross-validation procedures, penalized approaches, and the use
of model selection criteria.

These and other model selection approaches are beyond the
scope of this course, but if you are interested in learning more,
I'd recommend taking STA-230 (Intro to Data Science).

]
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General Model Selection Recommendations

Each variable included in a model should make sense both
contextually and have a relatively small p-value.

Despite their drawbacks, algorithmic approaches to selection
can be used as starting points, but should not completely
drive your selection process.

Polynomial effects should be included only if there is a clear
reason for their inclusion.

As an example, we previously considered including a quadratic
term in a model because a quadratic pattern was observed in
the residual plots.

]
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This lecture only has scratched the surface of multiple
regression (there’'s so much more to cover!), and even still,
the concepts we have seen are a lot in and of themselves.

This being said, I'd like you all to understand (if nothing else)
these two concepts:

e Multiple regression can be used to adjust for confounding
variables, and
e model selection should be done with care, balancing between
the two principles of parsimony and the bias/variance tradeoff.
These notes cover chapter 10 of the textbook. Please read
through the section and its examples along with any links
provided in this lecture.

]
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