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Normal Distribution

"Dad” Joke of the Day

You've heard of sampling distributions,
We've talked about bootstrap distributions,

and we've even learned about randomization distributions...
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Normal Distribution

"Dad” Joke of the Day

But what do we call this distribution?

oo r&gﬂ"'

That's right, it's the (para)normal distribution!

*BA DUM TSSS*
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Normal Distribution

Normal Distribution

All jokes aside, during this lecture we will discuss the normal
distribution and its importance to statistics.
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Normal Distribution

Normal Distribution

Density

One of the most remarkable facts about this distribution is its
prevalence in the real world.

There are endless examples of variables whose distributions
are approximately normal.

The variables below are just a few of these:
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Normal Distribution

Normal Distribution

While each of these examples may be approximated by a normal
distribution, the approximating normal distribution isn't the same for
each.

Each normal distribution is centered at a different value and has a
different width.

This implies that each distribution is characterized by a specific mean
(center, u) and standard deviation ("width”, o).

We can see this by looking at the (ugly) formula that defines the normal

curve: )
_ 1 _(x=n)
)= Jorez & ( 207 )

There is a clear dependence on both x and o.

I/
n

(You aren’t expected to know or memorize this formulal)
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Normal Distribution

Standard Normal Distribution

Despite the fact that each normal distribution may be
characterized by a different mean (x) and standard deviation
(o), the data giving rise to the distribution can always be
standardized.

In doing so, we obtain the standard normal distribution.

The standard normal distribution is parameterized by © =0
and o = 1. (Does this seem familiar?)

Recall that z-scores are the way that we standardize variables.
We know that z-scores have a mean of 0 and standard
deviation of 1.

The standard normal distribution is just the distribution of the

. . . ]
z-scores of a normally distributed variable! -
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Normal Distribution

Standard Normal Distribution
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© LY

o p+o -1

The units of the standard normal distribution (right figure)
are in terms of the z-scores.

Oftentimes it is more convenient to work with the standard
normal distribution than with the "non-standard” normal
distribution.
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Normal Distribution

Probabilities

One example in which working with the standard normal distribution is
more convenient is when computing probabilities.

34.1%| 34.1%

As indicated by the figure above, areas under portions of the standard
normal curve are known. These areas correspond to certain probabilities.

For example, the area between 0 and 1 is 0.341 (i.e. 34.1%) so
Pr(0 < Z < 1) = 0.341.
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Normal Distribution

Probabilities

Assuming we didn't have the standardized distribution below and to the
right, we wouldn't be able to easily find Pr(1010 < X < 1030) from the
figure on the left.

Only after standardizing would we see that
Pr(1010 < X < 1030) = Pr(0 < Z < 1) = 0.341.

Py S
standardize
.---"/f ) -
950 970 990 1010 1030 1050 1070 -3 -2 -1 D +1  +2 43
A Normal Distribution The Standard Normal Distribution
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Normal Distribution

Probabilities

The following are three probability /z-score cutoffs you should
commit to memory.

There is a 68% probability for values to fall between -1 and 1;
a 95% probability between -2 and 2; and a 99% probability for
values to fall between -3 and 3.

Mean

Standard
Normal
Distribution

Z-score .3 -2 -1 0 1 2 3
2
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Normal Distribution

Probabilities

If we wanted to compute probabilities for some other interval,
say Pr(0.2 < Z < 1.8), we would need to use calculus
(integration) in order to find the area under the curve.

As it would turn out, there is not a closed form solution to the
integral of the normal curve and so statisticians have relied on
numerical methods to calculate these probabilities.

The results of these methods have been aggregated into
tables which allow the calculation of specific probabilities
without a computer.

Given that that the year is 2019 and computers are abundant,
we don't have to necessarily use these tables. We can just use
tools like Minitab to compute probabilities of interest for us. az
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Normal Distribution

Probabilities

Table entry

Historically, probability tables contain the area under the curve to the left
of some value, z.

In Minitab, we can obtain this probability by selecting Calc ->
Probability Distributions -> Normal and choosing Cumulative
Probability and Input Constant.

Because this yields only left tail areas, it is important to understand how az
to leverage symmetry and some basic probability rules.
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Normal Distribution

Rule #1

For the standard normal distribution,
Pr(Z > z1) = Pr(Z < —z1).

f2 f2

Area = 0.1075 Area = 0.1075

-1.24 Z 0 124 z

From the figure above,
Pr(Z > 1.24) = 0.1075 = Pr(Z < —1.24).
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Normal Distribution

Rule #2

For the standard normal distribution,
PI’(Zl < Z < 22) = Pr(Z < 22) — Pr(Z < 21).

Area Between Two z Values

o -

z 0 2z
1
1
= 1
1
‘\ I
0 2z 2z 0
Area to the left of z, Area to the left of z
Copyright® P ompany. 6/23
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Normal Distribution

Practice

The National Health and Nutrition Examination Survey (NHANES)
collected the heights of 2,649 adult women. The data have a mean of
63.5 inches and a standard deviation of 2.75 inches.

count

65
Height

1) Estimate the percentage of women who are under 5 ft (60 in)
2) Estimate the percentage of women who are between 5'3 and 5'6

3) Estimate the percentage of women who are over 6 ft (72 in)
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Normal Distribution

Solution

We first compute the z-score for 5 ft to obtain -1.27. Using the standard
normal distribution, we find that Pr(Z < —1.27) = 0.102.

In the actual sample, 282 out of 2649 women (10.6%) were under 5
ft.

The z-score for each height is -0.18 and 0.91. Using the standard normal
distribution, we find that Pr(—0.18 < Z < 0.91) = Pr(Z <
0.91) — Pr(Z < —0.18) = 0.819 — 0.429 = 0.390.

In the actual sample, 1029 out of 2649 women (38.8%) were
between 5'3 and 5'6.

Finally, the z-score here is 3.09. Using the standard normal distribution,
we find that Pr(Z > 3.09) = Pr(Z < —3.09) = 0.001.

In the actual sample, 3 out of 2649 women (0.1%) were over 6 ft.
]
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CLT and Applications

Sampling Distribution

Sampling Dotplot of Mean
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CLT and Applications

Bootstrap Distribution

Bootstrap Dotplot of | sean -
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CLT and Applications

Randomization Distribution

Randomization Dotplot of . Null hypothesis: u = oss
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CLT and Applications

Randomization Distribution

Clearly, each of the previous distributions - sampling, bootstrap, and
randomization - can be approximated using some normal distribution.

This is not unique to the examples chosen, but rather a consequence of
one of the most important results in all of statistics: the Central Limit
Theorem (CLT).

Given a "sufficiently large” sample size, the CLT establishes the normality
of many common statistics. These include:

e means

e proportions

e differences in means

e differences in proportions

In the coming chapters we'll discuss the estimation and testing methods
which rely on CLT-established normality for each of these statistics.

For now, we'll discuss the general approach of using the normal
distribution to perform SHT and to construct confidence intervals.

]
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CLT and Applications

SHT using the Normal Distribution

Randomization Dotplot of . Null hypothesis: u = s
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CLT and Applications

SHT using the Normal Distribution

The previous example shows us that, when the randomization
distribution is symmetric and bell-shaped, it can be
approximated by a normal distribution.

The approximating distribution should have a mean equal to
the hypothesized null value (98.6 in the previous example)
and a standard deviation equal to the standard error of the
randomization distribution (0.108 in the previous example).

Using this approximation, we can apply the probability tools
we learned for normal distributions in order to calculate
p-values.

The p-values are calculated by finding the area beyond the
observed sample statistic.

I/
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CLT and Applications

SHT using the Normal Distribution

Since we learned that working with a standard normal
distribution is often more convenient, we often work with the
z-statistic, or standardized test statistic.

The z-statistic is simply the z-score of your sample statistic
under the assumed null distribution:

sample statistic — null value
Ztest = SE

Using the z-statistic as opposed to the sample statistic allows
us to use the standard normal distribution to compute the
p-value.

A hypothesis test using a normal approximation is sometimes

e
called a z-test. =
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Practice

CLT and Applications

It is commonly accepted that the average healthy human has
a body temperature of 98.6 degrees Fahrenheit. However,
recently there has been speculation that this temperature may
change over time. Certain lifestyle choices and even simply
aging has been shown to affect normal body temperature.
The StatKey dataset "Body Temperature” contains the body
temperatures of a random sample of 50 adults taken in 1996.

1) Perform a two-sided randomization test assessing whether the
average body temperature in 1996 is 98.6.

2) Use the SE of the randomization distribution from 1) and your
sample statistic to construct a z-statistic and perform a z-test.

3) Compare the p-values obtained in both approaches.
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CLT and Applications

Cl's using the Normal Distribution

Bootstrap Dotplot of e
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CLT and Applications

Cl's using the Normal Distribution

The previous example shows us that, when the bootstrap
distribution is symmetric and bell-shaped, it can be
approximated by a normal distribution.

The approximating distribution should have a mean equal to
the original sample statistic (0.125 in the previous example)
and a standard deviation equal to the standard error of the
bootstrap distribution (0.140 in the previous example).

Rather than perform hypothesis tests with this approximating
distribution, we can construct confidence intervals.

]
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CLT and Applications

Cl's using the Normal Distribution

The "SE approach” to constructing bootstrap confidence
intervals is actually based on a normal approximation.

Recall that, for a standard normal distribution, we have that
95% of values fall between 2 standard deviations of the mean:

Mean

Standard
Normal
Distribution

Z-score -3 E] -1 0 1 2 3
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CLT and Applications

Cl's using the Normal Distribution

For bell-shaped and symmetric bootstrap distributions, which
can be approximated by a normal distribution, you'll recall
that the "SE approach” stated a 95% confidence interval is
found by computing:

sample statistic + 2SE

This is based on the idea that, like the approximating normal
distribution, 95% of the values of our bootstrap distribution
should fall between 2SE (i.e. 2 standard deviations) of the
mean.
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CLT and Applications

Cl's using the Normal Distribution

Using strictly the normal approximation of a bootstrap distribution, we
can compute confidence intervals at various confidence levels (not just
95%).

In general, we can find the P% confidence interval by using z., the
critical value that captures the middle P% of the approximating normal
distribution.

Commonly used values of z.i+ and their corresponding confidence levels
are provided in the table below:

Confidence Level | 80% | 90% | 95% | 99%
Zerit | 1.282 | 1.645 | 1.960 | 2.576

Other critical values can be found in StatKey under "Theoretical
Distributions” using "Two-Tail".
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CLT and Applications

Practice

Using the "Body Temperature” Data in StatKey:

1) Find 90% and 98% percentile bootstrap confidence intervals
for the population mean.

2) Use a normal approximation of the bootstrap distribution to
find 90% and 98% confidence intervals for the population
mean

3) Compare the the two sets of intervals.
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CLT and Applications

Summary

Confidence Intervals:
sample statistic & z.;; * SE

where z.+ is chosen from the standard normal distribution
based upon the desired confidence level.

Hypothesis Testing:

sample statistic — null value
Ztest — SE

where the p-value is found by calculating area(s) defined by
Ziest ON the standard normal distribution.
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CLT and Applications

A Peek at What's Next...

In each of the methods learned today - confidence interval
construction and hypothesis testing using normal distributions
- we've assumed knowledge of SE.

In the past, we've learned how we can estimate the SE using
bootstrapping or randomization.

In the coming lectures, we'll learn other methods of
estimating the standard error for various types of data. These
methods will not rely on simulating thousands of samples as is
the case for randomization and bootstrap-based methods.
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Right now, you should...

e Know the basic probability rules and properties of the standard
normal distribution

e Be comfortable applying these properties to find areas under
the standard normal curve

e Conduct z-tests and construct confidence intervals using a
normal approximation

These notes cover sections 5.1 and 5.2 of the textbook.
Please read through the section and its examples along with
any links provided in this lecture.
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